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The decay power law in grid-generated turbulence 

By MOHSEN S .  MOHAMEDt A N D  JOHN C. LARUE 
Department of Mechanical Engineering, University of California, Trvine, CA 92717, USA 

(Received 2 October 1989 and in revised form 15 February 1990) 

The effect of initial conditions on the decay exponent and coefficient and virtual 
origin in the decay power-law form for the variation of the variance of the turbulent 
velocity downstream of biplane grids constructed of rods of both round and square 
cross-section is determined. This effect is determined for data obtained as part of the 
present study as well as from previous studies. These studies cover a Reynolds 
number range from 6000 to 68000, mesh sizes of 2.54 and 5.08 cm, and solidities of 
0.34 and 0.44. 

It is shown that the choice of the virtual origin and the use of data in the non- 
homogeneous portion of the flow can have a significant influence on the value of the 
parameters in the decay power-law. Criteria are developed to identify the nearly 
homogeneous and isotropic portion of the flow. These criteria include low values of 
the velocity skewness, constancy of the skewness of the velocity derivative and 
balance of the turbulent kinetic energy equation. 

Results based on data selected by means of these criteria show that the decay 
exponent and virtual origin are independent of initial conditions such as Reynolds 
number, mesh size, solidity, and rod shape and surface roughness with values of 
respectively 1.30 and 0. In  contrast and as expected, the decay coefficient is found to 
be a function of these initial conditions. Thus, the downstream variation of the 
variance of the turbulent velocity is universally self-similar. 

1. Introduction 
Starting with the initial studies of Taylor (1935), owing to its relative simplicity 

and its usefulness as an aid in understanding the fundamental properties of turbulent 
flows, the study of homogeneous and isotropic turbulence has received widespread 
attention. Comprehensive reviews are presented by Batchelor (1953), Hinze (1959) 
and Monin & Yaglom (1975). 

In  particular, analyses based on the assumption of self preservation or self 
similarity of the correlation, structure, or spectral functions have led to predictions 
for the decay of the variance of the downstream component of the fluctuating 
velocity which have a power-law form (cf. von KarmBn & Howarth 1938; 
Kolmogorov 1941 ; Saffman 1967 ; George 1988). Specifically, these predictions for 
the decay of the velocity variance have the form: 

- 
u2 = a,(t-t,)-n, ( 1 )  

where 2 is the variance of the downstream component of the turbulent velocity, a, 

t Present address : The Department of Mechanical Engineering, Faculty of Engineering, Cairo 
University, Cairo, Egypt. 
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is a coefficient which depends on initial conditions, t is time, to is the virtual origin, 
and n is the decay exponent. 

In this paper an alternate, but equivalent form of the decay power law is used, 
which is obtained from (1) by using Taylor's hypothesis to convert from time to 
downstream position and dividing both sides by l? where U is the mean velocity. As 
a result of these operations, the following form for the power law is found : 

- 

U 2 / V  = A(x /MU -X,,/M,)-" ( 2 )  

where A = al/(lY-"M;) is the decay coefficient, x is the coordinate, positive in the 
downstream direction with origin a t  the grid, x, is the virtual origin, and Mu is the 
mesh size. 

While the analyses of von Karman & Howarth (1938), Kolmogorov (1941) and 
Saffman (1967) lead to the same form for the decay of the velocity variance, they do 
not lead to the same predicted value for the decay exponent. The corresponding 
predicted values for n are respectively 1,  

In contrast, George (1988) has suggested that there may not be a universal self- 
preserving state for grid generated flows. More specifically, the decay exponent and 
coefficient may not be a constant but may vary as a function of initial conditions. A 
review of various experimental results might appear to support George's suggestion. 
For example, while Batchelor & Townsend (1947, 1948), Stewart & Townsend (1951) 
and Portfors & Keffer (1969) find that n = 1, Corrsin (1963), Uberoi (1963), Uberoi & 
Wallis (1967, 1969) and Comte-Bellot & Corrsin (1971) find that 1.16 < n < 1.37. In 
addition, higher values of n, e.g. 1.43, have been found (cf. Baines & Peterson 1951). 

Aside from the possibility that there may not be a universal self-preserving state, 
one other possible reason for the variation in the values of n and A is that the 
corresponding data have not been analysed in a consistent manner. For example, in 
some studies, data near the grid where the flow is inhomogeneous and anisotropic and 
the power-law decay is inapplicable, is used to determine n. Also, in many studies, 
the virtual origin is not determined in a consistent and objective manner. 

The purpose of the present study is to present an objective method for the 
determination of the virtual origin, decay exponent, and associated coefficient which 
is applicable not only to data obtained in the flow downstream of a grid but also, in 
concept and in modified form, to other self-preserving flows. The approach used in 
the study discussed herein is to perform a careful analysis relevant to the selection 
of the virtual origin and selection of data in the power-law region for data obtained 
as part of the present study. The results of that analysis are next applied to data 
obtained in a number of previous studies. The comparison of the values for the decay 
exponent and coefficient and the virtual origin from the present and previous studies 
is used to determine the effect of initial conditions on those quantities and the lack 
or presence of universal self-preservation. 

In $2 we discuss the relevant characteristics of the flow downstream of biplane 
grids. The experimental arrangement and techniques for the present study are 
presented in $3. The results are given in $ 4  and a summary of the conclusions in $5. 

and %. 

2. Background 
In this section a brief review of the relevant characteristics of the flow field 

downstream of a biplane grid is presented. This is followed by a discussion of criteria 
that can be used to indicate when the flow is locally isotropic. 

The flow field downstream of a biplane grid in a wind tunnel is described in detail 
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by Monin & Yaglom (1975) and hence only a brief description is presented here. The 
flow field downstream of a grid can be divided basically into three regions. The first 
is the developing region nearest the grid where the rod wakes are merging, the flow 
is inhomogeneous and anisotropic and, consequently, there is production of turbulent 
kinetic energy. This region is followed by one where the flow is nearly homogeneous, 
isotropic and locally isotropic but where there is appreciable energy transfer from one 
wavenumber to another. It is in this region that the form of the power-law decay 
discussed in this study is applicable. The third region or final period of decay where 
viscous effects act directly on the large energy containing scales is furthest 
downstream from the grid (cf. Batchelor 1953). 

Since the form of the decay power law discussed herein is applicable only in the 
second or power-law region, it is important that only data from that region be used 
to determine the decay exponent and coefficient, and virtual origin. For this reason, 
studies and criteria which relate to identification of the downstream positions where 
the decay power-law region begins and ends and, in particular, where the flow 
becomes nearly homogeneous, isotropic and locally isotropic are next presented. 

One of the more detailed studies of the approach to homogeneity in grid generated 
flows is presented by Grant & Nisbit (1957). They find that the anisotropy and 
inhomogeneity diminish very slowly with downstream distance from the grid and 
that the position where the flow becomes homogeneous and isotropic depends on Mu 
and ReMu. For example, 80 mesh lengths downstream of a grid with a mesh size of 
1.27 cm, they find about a 30 % variation in ;II" in the direction normal to the mean 
flow direction. They also find that the decay coefficient and exponent obtained along 
different mean streamlines vary. 

In addition, Corrsin (1963) shows that the shape of the grid elements and its 
solidity ratio have important effects on both the homogeneity, intensity level and the 
stability of the wake system generated by the grid elements. Also, Uberoi & Wallis 
(1967) show that the homogeneity, even as far downstream as x/M, = 95, depends 
on the accuracy of the grid construction and the surface roughness of the grid-rod 
elements. Further, Corrsin (1963) shows that 'an effective homogeneity ' is generally 
attained when dL,/dx 4 1 ; (L,/A) (dhldx) 4 1 ; and ( -L,/u2) (dG/dz) 4 1,  where 
L, and h are respectively the integral and Taylor lengthscales. For grids with a 
relatively low solidity, such as the ones considered in this study, Corrsin (1963) 
suggests that these conditions are satisfied a t  F/M,, 2 40. 

The skewness of the velocity, X(u) = U ~ / U ~ ~ ,  provides one means to assess the 
approach to isotropy of the flow. Based on simple arguments concerning reflection of 
the downstream coordinate axis, the velocity skewness should be zero in an isotropic 
flow. 

One indicator of the position where the flow becomes locally isotropic is based on 
the analysis of Batchelor (1953) who shows that, in a flow that is both locally 
isotropic and locally similar, the skewness of the velocity derivative, S(au/ax) = 
(a~/az)~/ ( (au /ax)~) t ,  should be a constant. Thus, the position in the flow where 
S(au/ax) becomes a constant can be taken as the position where the flow becomes 
locally isotropic. 

A second indicator of the position where the flow becomes locally isotropic is 
provided by a comparison of the dissipation rate of turbulent kinetic energy 
computed from the balance equation to that computed from the variance of the 
velocity derivative. 

The three criteria discussed in the preceding, the criteria of Corrsin (1963), and 
measurements of statistical properties of the flow in the transverse direction are all 
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M" (cm) ReM, Re," A" LIM," 
2.54 6000 28.37 0.639 0.476 
2.54 10000 36.07 0.497 0.471 
2.54 14000 41.60 0.423 0.467 
5.08 12 000 43.85 0.920 0.529 

a Evaluated at x / M ,  = 40. 

TABLE 1. Flow parameters 

used in the present study to  determine the downstream position where the flow 
becomes nearly isotropic, homogeneous and locally isotropic. 

3. Experimental arrangement and techniques 
Results obtained as part of the study discussed herein are obtained in the UCI 

Wind Tunnel which has a test section with a cross-section of 0.91 x 0.61 m and a 
length of 6.71 m. The tunnel is operated in a closed return mode and has a measured 
free-stream turbulence intensity of less than 0.1 % in the velocity range 3-12 m/s. 
The turbulence generator is one of two biplane grids constructed of polished 
aluminium rods. The rod diameters are 0.476 or 0.95 em with corresponding mesh 
sizes of 2.54 and 5.08 cm. The two grids have the same solidity ratio of 0.34 and are 
placed 0.9 m downstream of the exit of the contraction. The mean velocity in the 
tunnel is monitored by means of a MKS Baratron pressure transducer connected to 
a Pitot-static tube. 

A hot-wire sensor, operated in the constant temperature mode by means of a TSI 
Model 1050A anemometer, is used to  measure the time resolved axial velocity 
fluctuations. The wire is oriented horizontally in a direction normal to the mean flow. 
The wire is made from platinum-plated tungsten and is 5.0 pm in diameter and 
1.25 mm in length. Based on the square-wave test, the hot wire is found to have a 
frequency response in excess of 20 kHz in the velocity range of interest. An analogue, 
electronic differentiator is used to  obtain the time derivative of the velocity. 

The hot wire and its derivative signal are conditioned using precision buck and 
gain amplifiers and subsequently low-pass filtered at 3 kHz. The signals are recorded 
on analogue magnetic tape a t  a tape speed of 38.1 cm/s which corresponds to a 
frequency response of 5 kHz. The recorded signals are played back and digitized at 
a sample rate of 6000 samples/s. The digitized signals which correspond to 35 s of 
real time a t  each point, are stored on digital magnetic tape and then analysed on a 
digital computer using standard analysis software. 

The downstream decay data are collected along the centreline of the tunnel while 
data used to assess the transverse homogeneity are collected in the transverse 
direction at different downstream positions. The Reynolds numbers and other 
relevant flow parameters are shown in table 1. 

4. Experimental results and discussion 
The approach of the present flow to one that is nearly homogeneous is first 

discussed. This is followed by a discussion of criteria used to  assess the isotropy and 
local isotropy of the flow. 

Subsequently, the effect of variation of the virtual origin on the decay coefficient 
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and exponent and methods used to select the virtual origin are discussed. In  the final 
subsection, the decay coefficient and exponent obtained in both the present and 
previous studies are compared to the values obtained using data from those same 
studies but where only data in the nearly homogeneous and isotropic, decay power- 
law portion of the flow are used and where the virtual origin is chosen in a consistent 
manner for all data sets. 

4.1. Homogeneity, isotropy and local isotropy 
In this subsection, the approach of the flow to one that is homogeneous in a 
transverse plane is first discussed. Next, criteria used to assess the isotropy and local 
isotropy of the flow are discussed. 

4.1.1. Homogeneity 

The transverse variation of the difference between the root-mean-square 
longitudinal velocity and that a t  the centreline is shown in figure 1. The minima and 
maxima in the profiles correspond to the positions of the grid rods which are 
indicated by the * shown at y / M ,  = -0.5 and 0.5 where y is the transverse 
coordinate with origin at the centreline. 

As expected, the transverse variation in the r.m.s. downstream velocity is found 
t o  decrease in the downstream direction. For example, at x/Mu = 11 for ReMU = 
14000, the peak to peak variation is about 7% and decreases to less than 3% at 
x / M ,  = 40. For ReMU = 6000 and xlM,  = 11,  the peak to peak variation is about 
4%. This is slightly more than half the variation found a t  the higher Reynolds 
number. This reduced variation a t  the lower Reynolds number indicates that the 
flow will become nearly homogeneous closer to the grid than at  higher Reynolds 
numbers. These observations are in agreement with the corresponding results of 
Grant & Nisbet (1957). 
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4.1.2. Isotropy 
In an isotropic flow, the skewness of the velocity, X(u) = u3/u2', has zero value. 

Thus, the value of S(u) as a function of downstream position, which is shown on 
figure 2 (see also table 2), provides one means to  assess the approach of the flow to 
an isotropic condition. Near the grid where the flow is neither homogeneous nor 
isotropic, the value of the velocity skewness for Re = 6000, 10000, and 14000 and 
Mu = 2.54 cm and for Re = 12000 and M u  = 5.08 cm are small but positive. All 
values decrease with increasing downstream distance and values for the two lower 
Reynolds number values are seen to asymptotically approach values of, respectively, 
about -0.015 and -0.010. At a fixed downstream position, S(u)  is seen to increase 
with increasing Reynolds number. 

The positive values of S(u) near the grid and decreasing values with increasing 
downstream distance and decreasing Reynolds numbers are not inconsistent with the 
corresponding measurements of Bennett & Corrsin (1978) and analysis of Maxey 
(1987). In  his analysis, Maxey considers the velocity skewness to be the downstream 
flux of turbulent kinetic energy which he shows to be proportional to 2. Thus, 
consistent with the present measurements, S(u) would be expected to be initially 
positive and to decrease in magnitude with increasing downstream distance. 

However, it should be noted that, as indicated in figure 1, the initially positive and 
subsequently decreasing values of S(u) correspond to the inhomogeneous region of 
the flow. Thus, the positive values of X(u) may be due, a t  least partially, to the 
occasional passage of a fluid particle from a portion of the flow where the turbulent 
kinetic energy is relatively higher. Additional measurements of S(u)  in the transverse 
direction would be useful in assessing the effect of inhomogeneity. 

The negative values of S(u) for Re = 6000 and 10000 which start, respectively, a t  
about x/Mu = 29 and 39 are not inconsistent with the measurements of Bennett & 
Corrsin (1978) but are with the analysis of Maxey (1987). However, the uncert,ainty 
of the data appears to be about + O . O l  which is about the same as the uncertainty 
estimate of Helland & Stegan (1970). Thus, the small negative values must be 
interpreted with some caution and may not be inconsistent with the analysis of 
Maxey (1987) but rather may be due to the uncertainty of the data. 

- -3 
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x lM,  

FIGURE 3. Effect of Re,,, and Mu on the downstream variation of the skewness of the velocity 
derivative, &"au/az). See table 2 for symbols. 

Corresponding to the uncertainty of kO.01, the position where S(u)  = 0.01 is taken 
to be that where the flow becomes isotropic. The corresponding positions in 
ascending magnitude of Reynolds number are x /M,  = 24, 30, 45, and 55. 

4.1.3. Local isotropy 

Considered first as an indicator of the position where the flow becomes locally 
isotropic is the variation of S(au/ax)  with downstream position which is shown on 
figure 3. It can be seen that the value of S(au/ax)  approaches a constant which has 
a value that depends on Re,. The value is seen to  decrease with increasing Re,. For 
example, for an increase in Re, from 28.4 to 43.9, the value of S(au/ax)  decreases from 
about 0.5 to 0.45. These results are consistent with the corresponding results of 
Stewart & Townsend (1951) and Frenkiel & Klebanoff (1971), and the predictions of 
McComb, Shanmugasundaram & Hutchinson (1990). The downstream position 
where the nearly constant value of S(au/ax) is reached appears to correlate well with 
ReMU and is seen to increase from x /M,  = 25 to 55 as ReMu increases from 6000 to 
14000. 

Local isotropy of the flow can also be assessed by comparing the dissipation rate 
computed using the appropriate form of the turbulent kinetic energy equation and 
that computed using the velocity time derivative. In the nearly homogeneous and 
isotropic region downstream of the grid the turbulent kinetic energy equation 
becomes (cf. Comte-Bellot & Corrsin 1966) 

where = (2+?+2). 
Using Taylor's hypothesis and the - -  assumptions of isotropy and homogeneity in the 

x v 2  x w2), the above expression can be written as: decay power-law region (i.e. 

The value o f d z / d x  can be computed directly from the data for 2 versus x /Mu.  Near 
the grid, owing to the anisotropy and inhomogeneity, it is expected that this form of 
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x l  Mu 
FIGURE 4. Variation of the dissipation rate of turbulent kinetic energy computed as: 

8, = (15v/V) (au/C~t)~. See table 2 for symbols. 

the turbulent kinetic energy equation will yield inaccurate estimates of the 
dissipation rate. 

A second and independent estimate of the dissipation rate, E , ,  is obtained using the 
measured time derivative of the downstream velocity, Taylor’s hypothesis and 
the assumption of local isotropy. The corresponding expression for the dissipation 
rate is as follows: 

& u = - -  $m , 
Since the flow is not locally isotropic near the grid, this estimate for the dissipation 
rate is expected to be in error near the grid. 

While the expression for &, is based on the assumption of local isotropy, the 
expression for E: is based on both the assumptions of homogeneity and isotropy. At 
downstream distances far enough from the grid, where the flow is nearly 
homogeneous, isotropic and locally isotropic, the ratio, e,/&: should be nearly unity. 

The results shown on figure 4 are for the dissipation rate, E , ,  computed using the 
velocity derivative for the present data and also for the data of Sirivat & Warhaft 
(1983) who use a square-rod grid. These results show that, near the grid, E ,  decays 
faster than it does further downstream. The extent of the region of faster decay is 
seen to increase as the Reynolds number is increased and as the grid mesh size is 
decreased. For corresponding values of R e M U ,  the positions where the rate of decrease 
of E ,  changes is approximately the same as the positions where S(au/ax) becomes a 
constant. 

The downstream variation of the dissipation rate computed using the turbulence 
kinetic energy equation is shown on figure 5.  Along with the present results, the 
corresponding results from Comte-Bellot & Corrsin (1971), Sirivat & Warhaft (1983) 
and Kanellopoulos (private communication, 1987) are also presented. The slopes 
for the different data sets are in general agreement and vary from -2.36 to -2.47. 
For all the data sets, there is no indication of a change in the rate of decrease of €2 
with downstream position. 

Figure 6 shows the ratio, &,/s:, for the present results and those of Sirivat & 
Warhaft (1983). The ratio, B , / E $ ,  differs significantly from unity in the initial region 
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near the grid whcre a relatively high degree of anisotropy and inhomogeneity is 
expected. However, a value of unity is approached a t  downstream positions which 
vary from x /Mu = 25 to 55. For corresponding values of the Reynolds number, the 
position where the value of unity is reached is about the same as that where a 
constant value for S(au/ax) begins. It should be noted that the present observations 
are in general agreement with those of Sirivat &, Warhaft (1983). 

In summary, the results shown in figures 1-3 and 6 indicate that the flow becomes 
nearly locally isotropic, isotropic and homogeneous starting at about x / M u  equal to 
25, 40, 50 and 55 for respectively ReMu = 6000, 10000, 12000, and 14000. For the 
present data, these positions are taken to correspond to the beginning of the decay 
power-law region. For previous data sets, this position, consistent with the suggestion 
of Corrsin (1963), is taken to be x /Mu = 40. Consequently, results from previous 
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FIGURE 7. Decay of the normalized variance of the downstream turbulent velocity using different 
values for the virtual origin for ReMy = 14000 and Mu = 2.54 cm. Symbols correspond to measured 
values while lines correspond to the decay-law equation obtained by applying the method of least 
squares to the corresponding data with x/M,  -x,/M" as the independent variable; 0, xJM, = 0 ;  
A, xo/Mu = 2 ;  A, xo/Mu = 4;  0 ,  xo/Mu = 6. (Corresponding values of the decay exponent, 
coefficient, and standard error may be found in table 3.) 

studies a t  Reynolds numbers higher than 10000 may be based on a limited amount 
of data obtained in portions of the flow that are inhomogeneous and anisotropic. 
Since only a few data points might be obtained in the inhomogeneous and anisotropic 
portion of the flow the effect on the values of the virtual origin and decay coefficient 
and exponent should be negligible. 

The observed increase in the downstream position with increasing Reynolds 
number where the flow becomes nearly isotropic and locally isotropic is related to  the 
characteristic timescale of the large-scale structure. This assertion is based on the 
assumption that the time required for the large-scale anisotropic structures to decay 
and become isotropic is proportional to  the characteristic time, r ,  of the large-scale 
structure. Tennekes & Lumley (1989) suggest that the characteristic time of the 
large-scale structures is proportional to the convection time which in turn is taken 
equal to  x /U.  Thus, 

which C is the constant of proportionality. 
Consequently, for a constant mesh size, consistent with the observations, the 

position corresponding to the characteristic timescale is proportional to the Reynolds 
number and is expected to increase with increasing Reynolds number. Thus, the ratio 
of the positions where the flow becomes isotropic should be equal to the ratio of the 
corresponding Reynolds numbers. For pairs of Reynolds numbers of 6000 and 10000 
and also 6000 and 14000, the Reynolds number ratios are, respectively 1.66 and 2.33. 
The corresponding ratio of the approximate positions where the flow becomes 
isotropic are, respectively, 1.6 and 2.2. The similarity of the values of the 
corresponding ratios is supportive of the proposed explanation. 

For grids of two different mesh sizes with the same mean velocity, the position 
where the flow becomes isotropic would be expected to  be the same. The mean 
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Std. err. A 
% l M U  n x 104 x 104 

0 1.42 0.164 786.1 
2 1.33 0.184 374.3 
4 1.10 0.252 182.6 
6 0.95 0.268 91.33 

TABLE 3. Decay exponent, coefficient, and standard error for four different values of the virtual 
origin for Mu = 2.54 cm and ReMU = 14000 using data in both the inhomogeneous and anisotropic 
and nearly homogeneous and isotropic portions of the flow 

velocity is 3.66 m/s for both Mu = 2.54 cm and Re = 6000 and also M ,  = 5.08 cm and 
Re = 12000. However, the corresponding positions where the flow becomes nearly 
isotropic and locally isotropic are found to be about x /M,  = 25 and 50. In physical 
units, the position where isotropy is reached for the grid with M u  = 5.08 cm is a 
factor of four larger than for the grid with Mu = 2.54 cm. The reason for this 
inconsistency is not obvious. 

4.2. Determination of the virtual origin 

The power-law expression contains three unknown constants, A ,  n and x,,, which 
must be determined. The virtual origin, x,, is used to  account for the fact that the 
effective origin of the turbulent velocity fluctuations may not coincide with the 
location of the grid. Typical values for the virtual origin fall in the range of 0 to 20 
(cf. Batchelor & Townsend 1948; Comte-Bellot & Corrsin 1966). 

As shown on figure 7 ,  the value of the virtual origin, even for the limited range of 
0-6, can have a significant effect on the decay exponent. For example, this variation 
in value of the virtual origin, as shown in table 3, leads to  a change in the decay 
exponent from 1.42 to 0.95 and a change in the decay coefficient from 786.1 to 91.33. 
Here it should be noted that data used to obtain these results correspond to both the 
inhomogeneous and homogeneous portions of the flow and that exponents less than 
1 would correspond to an increase in turbulent kinetic energy with downstream 
distance and hence can be rejected on physical grounds. 

Qualitatively similar results are obtained when only data obtained in the nearly 
homogeneous portion of the flow are used. There are, however, quantitative 
differences. For example, use of data only in the nearly homogeneous and isotropic 
portion of the flow and a virtual origin of zero leads to a decay exponent and 
coefficient of respectively 1.285 and 364.0. Thus, there is a reduction in the decay 
exponent and coefficient of respectively 9% and more than 50%. Therefore, it seems 
clear that objective criteria must be used to choose only data in the nearly 
homogeneous and isotropic portion of the flow. In  addition, the method used to 
determine the virtual origin must be objective and accurate. 

The decay exponent and coefficient which correspond to  the selected values for the 
virtual origin indicated on figure 7 and which are used in the subsequent analysis are 
determined using a procedure based on one used by Comte-Bellot & Corrsin (1966) 
and Sreenivasan, Tavoularis & Corrsin (1980). There, the decay power-law expression 
(equation (2)) is rewritten as: 

log (g/uZ) = log ( A )  - (n)  log ( z / M ,  -xo/Nu).  (7)  
A value for X J M ,  is assumed and the method of least squares is used to obtain the 
corresponding values for A and n. 
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FIGURE 9. Corresponding pairs of values of the decay exponent and virtual origin that lead to 

a relative minimum of the standard error. See table 2 for symbols. 

These corresponding values for A and n are the ones that lead to a minimum for 
the root mean square of the difference between corresponding values of measured and 
computed values of Z/V.  Unfortunately, values for the root mean square of the 
difference, hereinafter referred to as the standard error, do not differ significantly for 
the different values of x, /M,.  Thus, use of the method of least squares or a similar 
method to determine the virtual origin and corresponding decay coefficient and 
exponent will not yield unambiguous results. 

The results shown on figure 8 illustrate this point. There the standard error is 
shown plotted as a function of the decay exponent for different values of the virtual 
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A,, x 10' 

FIGURE 10. Corresponding pairs of values of the decay exponent and coefficient that lead to a 
relative minimum of the standard error. See table 2 for symbols. 

%/Mu 
0 
2 
4 
6 
8 

10 
12 
14 

%opt 

1.31 
1.34 
1.25 
1.18 
1.17 
1.10 
1 .oo 
0.95 

A,,, x 104 

394.1 
432.7 
288.2 
218.4 
205.1 
136.7 
90.68 
84.46 

TABLE 4. Optimized decay exponent and coefficient for different values of the virtual origin for 
Mu = 2.54 cm and ReMU = 14000 using only data from the nearly homogeneous and isotropic 
portion of the flow 

origin. The minima in each of the curves correspond to the exponent, nopt, (and 
corresponding decay coefficient, A,,,) that  minimize the standard error for a 
particular value of the virtual origin. The minimum value for the standard error is 
seen to be about the same for the eight values of the virtual origin considered. In this 
figure, only data from the homogeneous portion of the flow are used. Similar results 
are found for the other data sets of the present study where ReMv = 6000, 10000 and 
12000. 

The values of no,, as a function of the virtual origin are shown on figure 9. The 
variation of the virtual origin from 0 to 14, is seen to lead to  approximately a 28% 
variation in nopt with values ranging from about 1.3 to 0.95 (table 4). Except a t  
x,/M, = 0, the values of nOpt for Mu = 5.08 cm appear to be consistently lower than 
the corresponding values for Mu = 2.54 cm. 

The values of nOpt and Aopt which correspond to the minima of the standard error 
for all four Reynolds numbers are shown on figure 10. The optimum decay coefficient, 
Aopt, varies by 79% from 0.0394 to  0.0084. Except at nopt = 1.3, for a fixed value of 
noBt, Aopt appears to depend on Mu. 
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FIQURE 11.  Variation of the normalized virtual origin, x J M u  as a function of the starting 
position, X J M , ,  for n = 1 and 1.3. See table 2 for symbols. 

Since the standard error associated with each of the corresponding values of nopt, 
Aopt, and xo/Mu is nearly the same, an additional criteria must be developed which 
will provide a means to choose a particular set of values. One criteria that  can be used 
to make this choice is based on the assumption that n, A,  and xo/Mu should not 
depend on the starting position where the data are obtained as long as all the data 
are obtained in the decay power-law region. The results shown in figure 11 illustrate 
the application of this criteria. 

Shown on that figure are values of the virtual origin which lead to a minimum in 
the standard error for two fixed values of the decay exponent (n  = 1.0 and 1.3) as a 
function of different starting positions, xl/M,. The results shown on figure 11 
correspond to the present data and those of Van Atta & Chen (1969), Uberoi & Wallis 
(1967), Wyatt (1955) and Kanellopoulos (private communication, 1987) (the flow 
conditions corresponding to each study are listed in table 2). For n = 1, the virtual 
origin is seen to increase with increasing starting position. This variation in the 
virtual origin indicates that n = 1 is not the appropriate choice for the decay 
exponent. However, the nearly constant value of the virtual origin as a function of 
starting position for n = 1.3 indicates that a value of zero is the appropriate choice 
for the virtual origin. 

4.2.1. ESfect of initial conditions on the decay power-law exponent and coeficient 
In  this section, the influence of initial conditions such as ReMU, M,, grid solidity, 

c, and rod shape and surface roughness on the values of the decay coefficient and 
exponent are assessed. This assessment is applied both to results from the present 
study and results from previous studies. References for the previous studies along 
with the Reynolds number and relevant characteristics of the grids are indicated in 
table 2.  Also presented in that table are the values for the decay exponent, decay 
coefficient, and virtual origin obtained as part of the previous studies. These values 
are indicated in table 2 respectively by the column headings nold, Aold, and x,/M,. 

Revised values of the decay exponent and virtual origin, indicated respectively by 
the column headings, n and A ,  are computed using the data from the previous studies 
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FIGURE 12. Downstream variation of the normalized turbulent velocity variance with a virtual 
origin of zero. See table 2 for symbols. 

X l M ,  

but where data a t  x /M,  < 40 are eliminated from the analysis. In addition, the 
virtual origin is taken to be zero and the decay exponent and coefficient are found 
using the method of least squares as described previously. 

The more quantitative portion of the analysis relates to results obtained from 
biplane grids fabricated from smooth, round rods, for two values of the mesh size, 
2.54 and 5.08 cm, and two values of the grid solidity, 0.34 and 0.44. Selection of 
results with these parameters is due to  the fact that there appears to be a larger 
number of results for these conditions than for other conditions. This larger data set 
leads to a more definitive analysis of the effect of these initial conditions on the decay 
coefficient and exponent than could be obtained for other initial conditions. 
However, as indicated in table 2, results for other values ofM,, u, and rod shape and 
surface roughness are included for purposes of comparison. 

The downstream variation of ?/U as a function of x / M ,  is shown on figure 12 for 
grids fabricated from rods of circular cross-section with = 0.34. The line passing 
through each data set is obtained using the method of least squares. Comparison of 
this line to the trend of the data indicates the linearity of the data when plotted as 
a function of x /Mu.  Also noteworthy is the observation, that the rough wooden grid 
rods, as indicated by Uberoi & Wallis (1967), apparently lead to higher values of the 
relative velocity variance, and hence, a higher value for the decay coefficient, than 
for smooth rod grids a t  the same downstream positions. 

The decay exponent is shown plotted as a function of Reynolds number in figure 
13 for results which correspond to u = 0.34 and 0.44 and M, = 2.54 and 5.08 cm. The 
Reynolds number varies from 6000 to  68000. The mean and root-mean-square values 
for the decay exponents shown on this figure are respectively 1.300 and 0.024. While 
there is some scatter in the values for n, i t  seems clear that there is no systematic 
variation with Reynolds number, solidity, mesh size or surface roughness. 

The decay exponent can also be determined using the measured variation of the 
dissipation rate as a function of downstream distance as shown in figure 4. It is easy 
to show, using the turbulent kinetic energy equation and the power-law form for the 
variation of 2, that the variation of the dissipation rate with downstream position 
is also described by a power-law with an exponent of - n - 1 .  
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For the present data, in the region where the flow is nearly homogeneous and 
isotropic, the average value for the exponent in the power-law variation of the 
dissipation rate is 2.366. The root-mean-square value for the variation of the 
exponent is 0.0152. Thus, the value of the decay exponent obtained using the 
dissipation rate exponent is 1.366 which is about 5% higher than the average value 
found directly from the decay of 2. This difference may be due in part to the slight 
anisotropy and inhomogeneity of the flow but is small enough to be due solely to 
uncertainty in the measurements. 

It should be noted that the values of the decay exponents from Sreenivasan et al. 
(1980) and Uberoi (1963) differ from the mean by about twice the value of the root 
mean square. These two values correspond to  the largest deviation from the mean 
value but are still relatively small. Since the variation is small, it seems unlikely that 
the low values are an indication of any systematic variation a t  low values of the 
Reynolds number owing to the solidity variation from 0.34 to 0.44. 

However as indicated on figure 10, these lower values for the exponent should lead 
to a smaller value for the decay coefficient than would be found if the exponent were 
larger. Also of interest is that the rough surface of the grid used by Uberoi & Wallis 
(1967) appears to have no effect on the decay exponent while it does lead to an 
increase in the value of the decay coefficient. 

Thus, it  appears that the decay exponent is not a function of Reynolds number, 
grid surface roughness, solidity and mesh size for (+ = 0.34 and 0.44 and Mu = 2.54 
and 5.08 cm in the Reynolds number range from 6000 to 68000. However, extension 
of these conclusions to round rod grids with smaller mesh size, i.e. Mu = 1.27 cm, is 
not straightforward. 

For example, for Mu = 1.27 cm, the data of Batchelor & Townsend (1948) lead to 
the values of n, shown in table 2, of 1.185 and 1.316. The higher value of n which 
corresponds to a Reynolds number of 11000 is consistent with the preceding 
observations concerning the invariance of n. However, the lower value which 
corresponds to a Reynolds number of 5500 falls outside the uncertainty range and 
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FIGURE 14. Variation of the decay coefficient as a function of Reynolds number for Mu = 2.54 
and 5.08 em and solidities of 0.34 and 0.44. Same symbols as for figure 13. 

may be indicative of a variation of n with ReMU for small Mu. In  contrast, values for 
the decay exponent obtained using the square rod data of Sirivat & Warhaft (1983) 
indicate that grid rod shape has a t  most a small effect on the decay exponent. 

The corresponding decay coefficients, A ,  are shown plotted as a function of 
Reynolds number on figure 14. I n  this plot, the value of the decay coefficient 
corresponding to the rough wooden rod results of Uberoi & Wallis (1967) is not 
presented. This is due to the fact, as pointed out in the discussion of figure 12, that 
the increased grid rod roughness leads to an increase in the value of the decay 
coefficient and the intent in this figure is to compare results for grids made from rods 
with smooth surfaces. 

For cr = 0.34, and a fixed value of ReMU, the decay coefficient increases with 
increasing Mu. The increase is small but not negligible. For example a t  ReMU = 
10000, the increase in mesh size from 2.54 to 5.08 cm leads to about a 15 % increase 
in A .  

For both values ofM,, the value of the decay coefficient decreases with increasing 
Reynolds number. A linear least-square fit to the two sets of decay coefficients (for 
Mu = 2.54 and 5.08 cm) indicates that the rate of decrease with increasing Reynolds 
number for the two mesh sizes is about the same. Again the variation is small but not 
negligible. For example, at Mu = 5.08 cm, an increase in ReMU from 10000 to 20000 
leads to a 6 %  decrease in A.  The variation of the decay coefficient for grids with 
cr = 0.44 is less clear and more data are required before a relationship between A ,  Mu 
and ReMu can be established. 

The variation of the decay coefficient with Reynolds number, mesh size, solidity, 
and surface roughness is not surprising and is due to the variation in drag Coefficient 
of the grid. 

5. Concluding remarks 
The use of an objective method for the determination of the virtual origin and 

decay coefficient and exponent when applied to results of the present and previous 
studies leads to a significant reduction in the scatter of those values. I n  addition the 
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dependency on initial conditions such as Reynolds number, mesh size, solidity, grid 
rod shape and surface roughness can be determined. The method consists of three 
steps : 

(i) Development and use of criteria for the selection of data in the region where the 
flow is nearly homogeneous and isotropic ; 

(ii) Use of the method of least squares to find values of the virtual origin and decay 
coefficient and exponent which minimize the root mean square of the difference 
between corresponding measured and computed values of the turbulent velocity 
variance ; and, 

(iii) Use of data in different ranges of downstream positions to find values for the 
virtual origin and decay exponent which do not vary as a function of downstream 
position. 

This approach is first evaluated for results which are obtained as part of the 
present study and then applied to other data. For the present data the mesh 
Reynolds number and mesh size vary, respectively, from 6000 to 14000 and 2.54 to 
5.08 cm. The corresponding range for Re ,  is 2840.  For data from all sources used in 
the study, the mesh Reynolds number varies from 5150 to 68000; the mesh size 
varies from 1.27 to 5.08 cm; and, solidities are either 0.34 or 0.44. The corresponding 
overall range of Re ,  is 28-100. 

For this range of parameters and using the approach proposed herein, the 
exponent in the decay power law is found, with two exceptions, to  be independent 
of Reynolds number, mesh size, solidity, grid rod shape and surface roughness for 
biplane grids. The value for the decay exponent is found to  be 1.300 with a root mean 
square variation of 0.024. The value of the virtual origin is found to be zero and also 
to be independent of initial conditions. I n  contrast, and as expected, the decay 
coefficient is found to  be a function of those same initial conditions. 

Thus, based on the constancy of the exponent in the power-law decay for the 
velocity variance, the turbulence downstream of biplane grids, for the range of 
conditions of the present study, has a universal self-similar behaviour. 

The results also suggest that, for a fixed mesh size, the position where the flow 
become isotropic is proportional to the characteristic time of the large structure and 
hence increases with Reynolds number. 

We would like to acknowledge one of the referees for his comments which initiated 
our discussion of the velocity skewness, Dr K. N. Helland for his helpful discussions 
on that same subject, and Professor W. K. George for some stimulating, general 
discussions concerning the decay law in grid turbulence. In  addition, we would like 
to  acknowledge J in  Chung for help in preparing the figures and George Truesdell for 
help in editing the manuscript. 
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